(J)

of opl=

Roll No.

Total Pages: 03

BT-6/M-19

36154

ANALYSIS OF DESIGN OF ALGORITHMS IT-302N

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting one question from each Unit. All questions carry equal marks.

Unit I

1. (a) What is the role of asymptotic in algorithm design?

Discuss in detail about the relationship of Big-Oh,

Big-Omega and Theta notations with suitable examples.

(b) Explain Strassen's algorithm for matrix multiplication with suitable example. 71/2

(a) Write an algorithm to sort elements using quick sort. Show that steps for the following list: (40, 80, 35, 90, 45, 50, 70). Also analyse the complexity of quick sort.

(3-34/3) L-36154

P.T.O.

(b) What do you mean by recurrence relation? Solve, the following recurrence relation using recurssion tree method:

$$T(n) = T(n/3) + T(2n/3) + Cn$$

Unit II

- 3. (a) Write and explain Kruskal's algorithm to find minimum spanning tree with suitable example and also analyse its time complexity.
 - (b) What are the elements of greedy approach? Solve fractional knapsack problem using greedy approach by taking suitable example. 7½
- 4. (a) Write and explain algorithm for finding minimal path in a graph using Bellmen Ford with the help of suitable example. Also explain its complexity. 71/2
 - (b) What do you understand by dynamic programming approach? Write and explain the algorithm for longest common subsequence and compute the longest common subsequence between the two strings "AFSHBDA" and "ASFDHBA". 7½

Unit III

5. Discuss the basics of backtracking. How is backtracking useful to solve algorithmic problems? Solve the 8-queen problem using backtracking algorithm.

L-36154

6.	(a)	Solve the following instance of the knapsack
		problem using branch and bound technique
		(W _(Capacity of knapsack) = 15).

Items	W (Weight)	V (Value)	
11	9	15 .	
12	6	6	
13	7	5	
14	2	1	71/2

(b) What is Travelling Salesmen Problem? How can you solve this problem? Explain. 7½

Unit IV

- 7. (a) Write the algorithm of breadth first graph traversal technique and also explain its time complexity. 71/2
 - (b) Define a Binary Search Tree (BST)? Write an explain algorithm to perform deletion of an item in BST.
- (a) Discuss the classes P, NP, NP complete and NP hard with examples. How can you show that a problem is NP complete?
 - (b) How can you find complexity of a non-deterministic algorithm? Explain using a suitable example. 71/2

(3-34/4) L-36154

- 3

200